This page shows how a monophonic audio signal is rendered to Ambisonics by providing
angular direction. This procedure is the standard approach for creating virtual sound sources
in object-based spatialisation.
This example assumes a plane-wave (far-field) source model.
-----
Some Conventions
- Cartesian coordinates:
\(x=\text{front->back}\)
\(y=\text{left->right}\)
\(z=\text{up->down}\)
- Angles:
azimuth \(\varphi \in (-\pi, \pi]\) (CCW from +x toward +y),
elevation \(\theta \in [-\pi/2, \pi/2]\) (up from horizontal plane).
- Normalisation/order:
AmbiX (ACN channel order, SN3D normalisation), unless noted.
ACN index \(n=\ell(\ell+1)+m\).
For FOA (order \(\ell=1\)), the mapping is \([n]=[0,1,2,3] \leftrightarrow [W,Y,Z,X]\).
First-Order Ambisonics for a Single Point Source
A monophonic source \(s(t)\) at direction \((\varphi,\theta)\) encodes to the FOA vector
\(\mathbf a(t)=\begin{bmatrix}W&Y&Z&X\end{bmatrix}^{\mathsf T}\) (AmbiX ordering) as:
\begin{equation*}
\begin{aligned}
W(t) &= s(t)\,Y_0^0(\theta,\varphi),\\
Y(t) &= s(t)\,Y_1^{-1}(\theta,\varphi),\\
Z(t) &= s(t)\,Y_1^{0}(\theta,\varphi),\\
X(t) &= s(t)\,Y_1^{1}(\theta,\varphi),
\end{aligned}
\end{equation*}
with the real SN3D first-order spherical harmonics:
\begin{equation*}
\begin{aligned}
Y_0^0(\theta,\varphi) &= 1,\\
Y_1^{1}(\theta,\varphi) &= \cos\theta\,\cos\varphi,\\
Y_1^{-1}(\theta,\varphi) &= \cos\theta\,\sin\varphi,\\
Y_1^{0}(\theta,\varphi) &= \sin\theta.
\end{aligned}
\end{equation*}
Thus, explicitly:
\begin{equation*}
\begin{aligned}
W(t) &= s(t),\\
X(t) &= s(t)\,\cos\theta\,\cos\varphi,\\
Y(t) &= s(t)\,\cos\theta\,\sin\varphi,\\
Z(t) &= s(t)\,\sin\theta.
\end{aligned}
\end{equation*}
FOA — Multiple Point Sources (Object-Based)
For \(N\) sources \(s_i(t)\) at \((\varphi_i,\theta_i)\), FOA channels are a linear sum:
\begin{equation*}
\mathbf a(t) =
\sum_{i=1}^{N}
s_i(t)\,
\begin{bmatrix}
1\\[2pt]
\cos\theta_i\,\sin\varphi_i\\[2pt]
\sin\theta_i\\[2pt]
\cos\theta_i\,\cos\varphi_i
\end{bmatrix}
\quad \text{(AmbiX/ACN order } [W,Y,Z,X]\text{).}
\end{equation*}
Higher-Order Ambisonics (General Order \(L\))
Let \(Y_{\ell}^{m}(\theta,\varphi)\) be the real SN3D spherical harmonics
with \(\ell=0..L\) and \(m=-\ell..\ell\). For a single source:
\begin{equation*}
a_{\ell m}(t) = s(t)\,Y_{\ell}^{m}(\theta,\varphi),\qquad
\ell=0..L,\; m=-\ell..\ell.
\end{equation*}
For \(N\) sources:
\begin{equation*}
a_{\ell m}(t) =
\sum_{i=1}^{N} s_i(t)\,Y_{\ell}^{m}\!\bigl(\theta_i,\varphi_i\bigr).
\end{equation*}
References
2019
- Franz Zotter and Matthias Frank.
Ambisonics: A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality.
Springer, 2019.
[details]
[BibTeX▼]
@book{zotter2019ambisonics,
author = "Zotter, Franz and Frank, Matthias",
publisher = "Springer",
title = "{Ambisonics: A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality}",
year = "2019"
}
2015
- Matthias Frank, Franz Zotter, and Alois Sontacchi.
Producing 3d audio in ambisonics.
In Audio Engineering Society Conference: 57th International Conference: The Future of Audio Entertainment Technology–Cinema, Television and the Internet. Audio Engineering Society, 2015.
[details]
[BibTeX▼]
@inproceedings{frank2015producing,
author = "Frank, Matthias and Zotter, Franz and Sontacchi, Alois",
title = "Producing 3D audio in ambisonics",
booktitle = "Audio Engineering Society Conference: 57th International Conference: The Future of Audio Entertainment Technology--Cinema, Television and the Internet",
year = "2015",
organization = "Audio Engineering Society"
}
2009
- Frank Melchior, Andreas Gräfe, and Andreas Partzsch.
Spatial audio authoring for ambisonics reproduction.
In Proc. of the Ambisonics Symposium. 2009.
[details]
[BibTeX▼]
@inproceedings{melchior2009spatial,
author = {Melchior, Frank and Gr{\"a}fe, Andreas and Partzsch, Andreas},
title = "Spatial audio authoring for Ambisonics reproduction",
booktitle = "Proc. of the Ambisonics Symposium",
year = "2009"
}
1973
- Michael A. Gerzon.
Periphony: With-Height Sound Reproduction.
Journal of the Audio Engineering Society, 21(1):2–10, 1973.
[details]
[BibTeX▼]
@article{gerzon1973periphony,
author = "Gerzon, Michael A.",
journal = "Journal of the Audio Engineering Society",
number = "1",
pages = "2--10",
title = "{Periphony: With-Height Sound Reproduction}",
volume = "21",
year = "1973"
}